Pearson Edexcel

Mark Scheme (Results)

October 2021

Pearson Edexcel International Advanced Level In Chemistry (WCH14)
Paper 01: Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021
Question Paper Log Number P67130A
Publications Code WCH14_01_2110_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities. Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (Multiple Choice)

Question number	Answer	Mark
$\mathbf{1 (a)}$	The only correct answer is A (rate $=k$) $\boldsymbol{B} \quad$ is incorrect because this is a first order rate equation C is incorrect because this is a second order rate equation D is incorrect because this shows overall order four and refers to the reverse reaction	(1)

Question number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is $\mathbf{C}\left(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$	(1)
$\boldsymbol{A} \quad$ is incorrect because rate constants always have units		
$\boldsymbol{B} \quad$ is incorrect because these are the units of a first order rate constant		
D is incorrect because these are the units of a second order rate constant		

Question number	Answer	Mark
1(c)	The only correct answer is A B is incorrect because this graph shows a first order reaction C is incorrect because this graph shows a first order reaction D is incorrect because this graph shows no reaction occurring	(1)

Question number	Answer	Mark
$\mathbf{2}$	The only correct answer is D (increased, unchanged) A is incorrect because the average energy of the particles in a system increases with temperature and activation energy is not affected by temperature	
	B is incorrect because the average energy of the particles in a system increases with temperature C is incorrect because activation energy is not affected by temperature	

Question number	Answer	Mark
$\mathbf{3}$	The only correct answer is D (the entropy change of the system, $\Delta S_{\text {system, is positive) }}$ $\boldsymbol{A} \quad$ is incorrect because this is a statement not an explanation \boldsymbol{B} is incorrect because activation energy affects rate not direction of change \boldsymbol{C} is incorrect because the overall enthalpy of reaction is still endothermic	$\mathbf{(1)}$

Question number	Answer	Mark
$\mathbf{4}$	The only correct answer is B (positive, negative) A is incorrect because endothermic reactions have negative $\Delta S_{\text {surroundings }}$ $\boldsymbol{C} \quad$ is incorrect because when there are more gas molecules in the products than the reactants $\Delta S_{\text {system }}$ is positive and endothermic reactions have negative $\Delta S_{\text {surroundings }}$ D is incorrect because when there are more gas molecules in the products than the reactants $\Delta S_{\text {system }}$ is positive	

| Question
 number | Answer | Mark |
| :--- | :--- | :--- | :--- |
| $\mathbf{5}$ | The only correct answer is \mathbf{D} (changes when the temperature changes and when the substance changes state)
 $\boldsymbol{A} \quad$ is incorrect because standard molar entropy is affected by change of state and change in temperature
 \boldsymbol{B} is incorrect because standard molar entropy is affected by change of state
 $\boldsymbol{C} \quad$ is incorrect because standard molar entropy is affected change in temperature | |

\(\left.$$
\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Question } \\
\text { number }\end{array}
$$ \& Answer

\hline \mathbf{6 (a)} \& The only correct answer is \mathbf{C}\left(K_{\mathrm{c}}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}\right)

A is incorrect because the concentration of steam has been omitted

\boldsymbol{B} \quad is incorrect because the concentration of steam has been omitted and carbon is not in the gas phase

\boldsymbol{D} \quad is incorrect because carbon is not in the gas phase\end{array}\right]\)| $\mathbf{(1)}$ |
| :---: |

Question number	Answer	Mark
6(b)	The only correct answer is B (increases, decreases) A is incorrect because the reverse reaction is exothermic so K_{c} decreases C is incorrect because the forward reaction is endothermic so K_{c} increases and the reverse reaction is exothermic so K_{c} decreases D is incorrect because the forward reaction is endothermic so K_{c} increases	(1)

Question number	Answer	Mark
7(a)	The only correct answer is B $(y / 2)$	$\mathbf{(1)}$
	A \quad is incorrect because the electron affinity of an element refers to a single atom of that element $\boldsymbol{C} \quad$ is incorrect because this includes the atomisation energy of two atoms of chlorine is incorrect because this includes the atomisation energy of chlorine	

Question number	Answer	Mark
7(b)	The only correct answer is $\mathbf{A}(\mathrm{LE}=u-(v+w+x+y))$ B is incorrect because this expression gives $-L E$ C is incorrect because the electron affinity (x2) term and the enthalpy of formation have the wrong sign D is incorrect because this is the reverse of C which itself is incorrect.	(1)

Question number	Answer	Mark
7(c)	The only correct answer is C (the sum of the first and second ionisation energies of magnesium) $\boldsymbol{A} \quad$ is incorrect because x includes the second ionisation energy $\boldsymbol{B} \quad$ is incorrect because x D includes the first ionisation energy	(1)

Question number	Answer	Mark
$\mathbf{8}$	The only correct answer is $\mathbf{C}\left(\mathrm{CH}_{2} \mathrm{ClCOOH}\right.$ and $\left.\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}\right)$	(1)
	A is incorrect because ethanoic acid accepts a proton in this system so is a base	
$\boldsymbol{B} \quad$ is incorrect because ethanoic acid accepts a proton in this system so is a base		
D is incorrect because $\mathrm{CH}_{2} \mathrm{ClCOO}^{-}$is a base		

Question number	Answer	Mark
$\mathbf{9}$	The only correct answer is C (12.3)	
	$\boldsymbol{A} \quad$ is incorrect because the concentration of hydroxide ions has been halved instead of doubled	
	$\boldsymbol{B} \quad$ is incorrect because the concentration of hydroxide ions has been taken as 0.01 mol dm^{-3}	
$\boldsymbol{D} \quad$ is incorrect because this has been calculated using $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ as the concentration of calcium hydroxide		

Question number	Answer	Mark
$\mathbf{1 0}$	The only correct answer is B(optical isomerism only)	
	$\mathbf{A} \quad$ is incorrect because one of the carbon atoms of the double bond has two methyl groups	
	$\mathbf{C} \quad$ is incorrect because one of the carbon atoms of the double bond has two methyl groups and there is a chiral carbon	
	(1) incorrect because there is a chiral carbon	

Question number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is \mathbf{D} (permanent dipole forces, hydrogen bonds) A \quad is incorrect because pure ethanal does not form hydrogen bonds $\boldsymbol{B} \quad$ is incorrect because permanent dipole forces are less important than hydrogen bonding in the solubility of ethanal in water C \quad is incorrect because pure ethanal does not form hydrogen bonds and permanent dipole forces are less important than hydrogen bonding in the solubility of ethanal in water	

Question number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is A (2,4-dinitrophenylhydrazine)	(1)
	$\boldsymbol{B} \quad$ is incorrect because the precipitate is copper(I) oxide for all aldehydes	
	$\boldsymbol{C} \quad$ is incorrect because no precipitate is formed	
$\boldsymbol{D} \quad$ is incorrect because the precipitate is silver for all aldehydes		

Question number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is C(ethyl butanoate)	(1)
	A is incorrect because hydrolysis would give ethanoic acid	
$\boldsymbol{B} \quad$ is incorrect because hydrolysis would give butan-1-ol		
$\boldsymbol{D} \quad$ is incorrect because hydrolysis would give propanoic acid		

Question number	Answer	Mark
14	The only correct answer is A B is incorrect because this structure has $-\mathrm{C}_{2} \mathrm{H}_{4}-$ groups at both ends C is incorrect because this structure has $-\mathrm{C}_{2} \mathrm{H}_{4}-$ groups at both ends and the ester groups are reversed \boldsymbol{D} is incorrect because this structure has the ester groups reversed	(1)

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{1 5} & \text { The only correct answer is B (acids only ;acids and bases) } & \text { (1) } \\ & \boldsymbol{A} \quad \text { is incorrect because bases also speed up hydrolysis } \\ \boldsymbol{C} \quad \text { is incorrect because bases do not speed up esterification and acids also speed up hydrolysis } \\ \boldsymbol{D} \quad \text { is incorrect because bases do not speed up esterification }\end{array}\right]$
Section B

| Question
 number | Answer | Additional guidance |
| :--- | :--- | :--- | :--- |
| $\mathbf{1 6 (a) (i) ~}$ | -otherwise the mass of water from the combustion cannot
 be measuredAllow any indication that the measurement of water is affected
 Allow indication that the values of H and O obtained will be
 affected
 Ignore just reference to 'the products'
 Do not award (presence of water) affects the reaction of O_{2} with X
 Do not award water reacts with X
 Do not award water dissolves CO_{2} | |

Question number	Answer	Additional guidance				Mark
16(a)(ii)	- moles of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ - masses of C and H - mass of O - moles of C, H and O - ratio (1.33:2:1), (integer ratio) and empirical formula	```Example of calculation \(\mathrm{mol} \mathrm{CO}_{2}=4.31 \div 44=0.097955\) \(\mathrm{mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}=1.32 \div 18=0.073333\) mass of \(\mathrm{C}=0.097955 \times 12=1.1755 \mathrm{~g}\) mass of \(\mathrm{H}=0.073333 \times 2=0.1467 \mathrm{~g}\) mass of \(\mathrm{O}=2.50-(1.1755+0.1467)\) \(=1.1778 \mathrm{~g}\)```				5
			C	H	O	
		mol	$\begin{gathered} 0.0980 \times 1 \\ =0.0980 \\ \hline \end{gathered}$	$\begin{gathered} 0.0733 \times 2 \\ =0.147 \end{gathered}$	$\begin{aligned} & 1.178 / 16 \\ & =0.0736 \end{aligned}$	
		ratio	1.33	2	1	
		integers	4	6	3	
		$\begin{equation*} \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \tag{1} \end{equation*}$ No TE if oxygen mass not calculated In M1 and M2 mol CO ${ }_{2}$ and mass of carbon scores mol $\mathrm{H}_{2} \mathrm{O}$ and mass of hydrogen scores				

Question number	Answer	Additional guidance	Mark
16(b)(i)	An answer that makes reference to the following - two structures - $\quad{ }^{13} \mathrm{C}$ spectrum shows four different (types of) carbon atom (so molecular formula same as empirical formula) - reaction with Brady's reagent indicates a carbonyl compound - no reaction with Tollens' reagent indicates a ketone (group) / not an aldehyde - reaction with NaHCO_{3} (forming CO_{2}) indicates (carboxylic) acid	 Allow displayed or structural formulae or any combination of skeletal, displayed and structural Penalise incorrect horizontal - OH connectivity once Ignore names even if incorrect Accept X has four carbon environments Allow ${ }^{13} \mathrm{C}$ spectrum shows X has four types of carbon atom Ignore just ' X has four carbon atoms' Ignore just ' X is a ketone' / $\mathrm{C}=\mathrm{O}$ present Do not award 'acyl' Accept COOH (group)	6

Question number	Answer	Additional guidance	Mark
16(b)(ii)	An answer that makes reference to the following - reagents for iodoform test (1) - result for methyl ketone - result for ethyl ketone	iodine / I_{2} and sodium hydroxide / NaOH / potassium hydroxide KOH Accept $\mathrm{NaI} / \mathrm{KI}$ and NaOCl Allow iodine and OH^{-}/ alkali Ignore 'iodoform test' (pale) yellow precipitate Allow yellow solid / ppt /ppte /antiseptic smell No change / precipitate Allow no reaction / (pale) yellow precipitate does not form M2 and M3 dependent on M1 or a near miss or just 'iodoform test' If result not linked to structure max (2) e.g NaOH and I_{2} give yellow ppt (positive) and no reaction (negative) scores (2) If no reagent or an incorrect reagent given then both observation marks correct scores (1) Do not award use of physical methods	3

Question number	Answer	Additional guidance	Mark
16(c)	An answer that makes reference to the following - structure of \mathbf{X} - (three) peaks indicate three proton environments - peak heights / areas indicate environments contain 3, 2 and 1 protons - all singlets / no splitting so no adjacent proton environments - identification of proton environments from chemical shifts	 Answers may refer to the diagram Allow number of peaks shows number of proton environments Allow if the protons in each environment are clearly labelled e.g. each set circled Ignore just 'peak areas are 3:2:1' peak at δ about 11.1 is COOH peak at δ about1.9 is $\mathrm{CH}_{3} \mathrm{CO}$ peak at δ about 2.5 is $-\mathrm{OCCH}_{2} \mathrm{COOH}$ Allow 'alkane proton' / H-C-C Allow both 1.9 and 2.5 identified as $\mathbf{H}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ Do not award reference to the functional group rather than the proton M2, M3 and M5 may be awarded without referring to the structure M2 and M3 are standalone	5

(Total for Question 16 = 20 marks)

Question number	Answer	Additional guidance	Mark
17(a)(i)	An answer that makes reference to the following - sensible choice scale (to cover at least half the grid in both directions) and labelled axes with units on both axes - All points given in table correctly plotted TE on linear axes used - any sensible (reasonably) smooth best fit curve	Example of graph Allow line Allow any curve with all points within one square of the line Do not award a clearly point-to-point line Non-linear scale scores max (1) for M2 only Do not penalise punctuation errors, e.g. ($\mathrm{mol} \mathrm{dm}^{-3}$) for / $\mathrm{mol} \mathrm{dm}^{-3}$ Allow seconds / sec / secs for ' s '	3

Question number	Answer	Additional guidance	Mark
17(a)(ii)	- half-life $/ \mathrm{t}_{1 / 2}=120$ (s)	Allow $110-130$ (s) for a correct curve Allow a value in this range given in (a)(iii)	$\mathbf{1}$
		Do not award this mark unless there is some evidence of working on the graph in (a)(i) TE on the line drawn in (a)(i)	

Question number	Answer		Additional guidance	Mark
17(a)(iii)	- rearrangement of expression - calculation of value and units	(1) (1)	Example of calculation $\begin{aligned} & k=\ln 2 \div t^{1 / 2} \\ & =0.693 \div 120=5.7762 \times 10^{-3} / 0.0057762 \mathrm{~s}^{-1} \end{aligned}$ Ignore SF except 1 SF TE on value from 17(a)(ii) No TE on incorrectly rearranged expression $\begin{aligned} & t^{t / 2}=110 \text { gives } k=6.3013 \times 10^{-3} / 0.0063013 \mathrm{~s}^{-1} \\ & t^{t / 2}=125 \text { gives } k=5.5452 \times 10^{-3} / 0.0055452 \mathrm{~s}^{-1} \\ & t^{1 / 2}=130 \text { gives } k=5.3319 \times 10^{-3} / 0.0053319 \mathrm{~s}^{-1} \end{aligned}$	2

Question number	Answer	Additional guidance	Mark	
$\mathbf{1 7 (b) (i)}$		(1)	Example of calculation	
	• calculation of $\ln k$	(1)	$1 \div 376 \times 10^{-3}=-5.154$	
	• calculation of $1 / T$		TE on $17(a)($ iii) Plotted point can score both calculation marks Ignore incorrect or omitted units Ignore SF	$\mathbf{2}$

Question number	Answer	Additional guidance	Mark
17(b)(iv)	- identification and rearrangement of relationship - evaluation of activation energy - sign and units	Example of calculation $\begin{aligned} & \text { Grad }=-E_{\mathrm{a}} / R \text { and }-E_{\mathrm{a}}=\text { Grad } \times R \\ & -E_{\mathrm{a}}=-13667 \times R=-13667 \times 8.31 \\ & \quad=\|113572\| \end{aligned}$ $E_{\mathrm{a}}=(+) 113570 \mathrm{~J} \mathrm{~mol}^{-1} /(+) 114000 \mathrm{~J} \mathrm{~mol}^{-1}$ Or $E_{\mathrm{a}}=(+) 113.570 \mathrm{~kJ} \mathrm{~mol}^{-1} /(+) 114 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Allow (+)110000 $\mathrm{J} \mathrm{mol}^{-1}-118000 \mathrm{~J} \mathrm{~mol}^{-1}$ (from allowed range in (b)(iii) TE on (b)(iii) Sign on final value must be consistent with sign of gradient Ignore SF except 1 SF	3

(Total for Question 17 = 15 marks)

Additional guidance	Mark
Guidance on how the mark scheme should be applied.	$\mathbf{6}$
The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).	
If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	
In general it would be expected that 5 or 6 indicative points would get 2 reasoning marks 3 or 4 indicative points would get 1 reasoning mark 0,1 or 2 indicative points would get zero reasoning marks	
If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded do not deduct mark(s).	
Comment: Look for the indicative marking points first, then consider the mark for the structure of the answer and sustained line of reasoning	

Question number	Answer	Additional guidance	Mark
19(a)(i)	$\bullet K_{\mathrm{p}}=\frac{p\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)}{p\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \times p\left(\mathrm{H}_{2} \mathrm{O}\right)}$	Allow p_{x} etc; upper case P / pp	$\mathbf{1}$
		Do not award square brackets Do not award omission of ' p ' Ignore correct state symbols Ignore omission of times sign	

Question number	Answer	Additional guidance	Mark
19(b)	An answer that makes reference to the following - high pressure favours the formation of ethanol and because 2 mol (of gas) form 1 mol - high temperature lowers the formation of ethanol and because the (forward) reaction is exothermic - high temperature is needed because otherwise the rate of reaction is too slow Or unconverted reactants can be recycled to increase the overall yield	Allow reverse arguments Accept increases yield (of ethanol) Allow reaction shifts to the right Allow fewer moles on RHS Do not award change in pressure changes K_{p} Accept decreases yield (of ethanol) Allow reaction shifts to the left Accepts because the back reaction is endothermic M1 \& M2 both first statements without explanation scores 1 out of 2 Ignore just 'increasing / high temperature increases rate’	3

Section C

Question number	Answer	Additional guidance	Mark
20(a)(i)	- correct equation	Examples of equations: $\begin{aligned} & \mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \\ & \mathrm{Or} \\ & \mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}^{2-} \end{aligned}$ Allow $\mathrm{HSO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$ Or $\mathrm{HSO}_{4}^{-} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{SO}_{4}^{2-}$ Accept \rightarrow for \rightleftharpoons Ignore state symbols even if incorrect.	1

Question number	Answer	Additional guidance	Mark
20(a)(ii)	- expression for K_{a} - calculation of K_{a} from $\mathrm{p} K_{\mathrm{a}}$ and $\left[\mathrm{H}^{+}\right]$from pH - rearrangement of expression for K_{a} and substitution of values and calculation of $\left[\mathrm{NaHSO}_{4}\right]$ in $\mathrm{mol} \mathrm{dm}{ }^{-3}(\mathbf{1})$ - calculation of $M_{\mathrm{r}}\left(\mathrm{NaHSO}_{4}\right)$ - calculation of $\left[\mathrm{NaHSO}_{4}\right]$ in $\mathrm{g} \mathrm{dm}^{-3}$	Example of calculation: $\begin{equation*} K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}{\left[\mathrm{HSO}_{4}^{-}\right]} \text {or } K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{HSO}_{4}^{-}\right]} \tag{1} \end{equation*}$ M1 is scored if implied in the calculation but if given must be correct Comment: Do not penalise SO_{4}^{-}for $\mathrm{SO}_{4}{ }^{2-}$ $\left.\left.\begin{array}{l} K_{\mathrm{a}}=10^{-1.92}(=0.012023) \text { and }\left[\mathrm{H}^{+}\right]=10^{-1.13}(=0.074131) \\ {\left[\mathrm{HSO}_{4}^{-}\right]=\frac{0.074131^{2}}{0.012023}=0.45709(\mathrm{~mol} \mathrm{dm}} \end{array}\right)^{-3}\right)^{*} .$ $\begin{equation*} M_{\mathrm{r}}\left(\mathrm{NaHSO}_{4}\right)=120.1 \tag{1} \end{equation*}$ Allow 120 $\begin{align*} & {\left[\mathrm{NaHSO}_{4}\right]=120.1 \times 0.45709} \tag{1}\\ & =54.896\left(\mathrm{~g} \mathrm{dm}^{-3}\right)^{*}(54.851 \text { if } 120 \text { used }) \end{align*}$ * These are obtained using unrounded intermediate values If $M_{\mathrm{r}}\left(\mathrm{HSO}_{4}^{-}\right)=97.1$ is used $44.383\left(\mathrm{~g} \mathrm{dm}^{-3}\right)$ scores M5 Accept $\begin{aligned} & {\left[\mathrm{HSO}_{4}^{-}\right]-\left[\mathrm{H}^{+}\right]=0.45709} \\ & {\left[\mathrm{HSO}_{4}^{-}\right]} \end{aligned}=0.45709+0.074131 .$ TE at each stage Ignore SF except 1 SF COMMENT	5

Question number	Answer	Additional guidance	Mark
20(a)(iii)	An answer that makes reference to the following: - hydrogensulfate (ion) dissociation / ionisation negligible (1) - $\quad\left[\mathrm{H}^{+}\right]$only due to (dissociation / ionisation of) HSO_{4}^{-}/ hydrogensulfate (ion)	Comment: Do not penalise SO_{4}^{-}for $\mathrm{SO}_{4}{ }^{2-}$ Allow $\left[\mathrm{HSO}_{4}^{-}\right]$equilibrium $=\left[\mathrm{HSO}_{4}^{-}\right]$initial $\left[\mathrm{NaHSO}_{4}\right]$ equilibrium $=\left[\mathrm{NaHSO}_{4}\right]$ initial Allow Slight / partial / incomplete / does not dissociate for 'negligible’ (dissociation) Allow $\left[\mathrm{H}^{+}\right]$due to) dissociation / ionisation of water negligible Or dissociation / ionisation of water negligible Or $\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left[\mathrm{H}^{+}\right]$ Allow $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for $\left[\mathrm{H}^{+}\right]$throughout Penalise omission of [] in discussion once only Penalise use of HA or 'weak acid' or A^{-}once only Ignore references to temperature	2

Question number	Answer		Additional guidance	Mark
20(b)(i)	An answer that makes reference to the following: - a buffer resists change in pH - on the addition of small amounts of acid and / or of alkali	(1)	Accept Maintains a fairly / nearly constant pH Allow withstands change in pH Allow large change or small change for change Do not award maintains constant pH Ignore references to the acid-salt ratio Allow H^{+}for acid base / OH^{-}for alkali	2

Question number	Answer	Additional guidance	Mark
20(b)(ii)	- substitution of values into K_{a} expression - rearrangement of K_{a} expression - calculation of pH to at least 1 dp	Example of calculation: $\begin{gather*} K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}{\left[\mathrm{HSO}_{4}^{2-}\right]} \\ K_{\mathrm{a}}=10^{-1.92}(=0.012023)=\frac{\left[\mathrm{H}^{+}\right] \times 0.500}{0.750} \\ {\left[\mathrm{H}^{+}\right]=\frac{K_{\mathrm{a}} \times 0.750}{0.500}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)} \tag{1}\\ \mathrm{pH}=-\log (1.5 \times 0.012023)(=-\log 0.018034)=1.744 \end{gather*}$ Ignore SF except 1 SF Correct answer with some working scores (3) TE at each stage but M3 dependent on some use of K_{a} and calculation of $\left[\mathrm{H}^{+}\right]$and value of $\mathrm{pH}<7$ Accept use of Henderson-Hasselbalch equation: $\begin{align*} \mathrm{pH} & =\mathrm{p}_{\mathrm{a}}+\log \frac{\left[\mathrm{SO}_{4}^{2-}\right]}{\left[\mathrm{HSO}_{4}^{-}\right]} \text {or } \log \frac{[\text { salt }]}{[\text { acid }]} \tag{1}\\ & =1.92+\log \frac{0.500}{0.750} \tag{1}\\ & =1.7439 \tag{1} \end{align*}$ TE on arithmetical errors If salt and acid reversed in H -H equation max 1 (M3 only for 2.0961) No TE on any other error in H-H equation (scores (0))	3

\begin{tabular}{|c|c|c|c|c|}
\hline Question number \& Answer \& \& Additional guidance \& Mark \\
\hline 20(b)(iii) \& \begin{tabular}{l}
- calculation of pH \\
and \\
change in pH for water \\
- calculation of new \(\left[\mathrm{HSO}_{4}{ }^{-}\right.\)] \\
and \\
calculation of new \(\left[\mathrm{SO}_{4}{ }^{2-}\right.\)] \\
- calculation of \(\left[\mathrm{H}^{+}\right]\) \\
- calculation of pH and change in pH for buffer \\
Use of H-H for M3 and M4
\[
\begin{align*}
\mathrm{pH} \& =1.92+\log \frac{0.495}{0.755} \tag{1}\\
\& =1.92+(-0.18334)=1.7367 \text { from } 1.7439 \tag{1}
\end{align*}
\]
\end{tabular} \& (1)
(1)
(1)

(1) \& | Example of calculation: |
| :--- |
| $\mathrm{pH}\left(0.00500 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\right)=-\log (0.00500)=2.30$ |
| $\Delta(\mathrm{pH})=7-2.30=4.70$ |
| Accept changes from 7 to 2.3 |
| If no other mark is scored in (b)(iii) $\mathrm{pH}=2.3$ scores 1 $\begin{aligned} & 0.750+0.00500=0.755\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & 0.500-0.00500=0.495\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \\ & {\left[\mathrm{H}^{+}\right]=\frac{K_{\mathrm{a}} \times 0.755}{0.495}=\frac{0.012023 \times 0.755}{0.495}} \\ & \quad=0.018338\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ |
| TE only on arithmetical errors and if at least one change in concentration calculated $\mathrm{pH}=-\log (0.018338)=1.737$ $\Delta(\mathrm{pH})=1.744-1.737=0.007$ |
| OR |
| $\Delta(\mathrm{pH})=1.74-1.737=0.003$ if rounded value given in (b)(ii) |
| Accept changes from 1.744 / 1.74 to 1.737 Allow 1.74 to 1.74 (3 SF) / no change |
| TE on M4 for arithmetical errors on correct method Allow TE if there has been some attempt at calculating a new $\left[\mathrm{H}^{+}\right]$. In both cases final pH must be lower than the start pH of the buffer and $\Delta(\mathrm{pH}) \leq 0.2$ |
| Ignore SF | \& 4

\hline
\end{tabular}

Question number	Answer	Additional guidance	Mark
20(c)	An explanation that makes reference to the following: - the colour of the methyl orange indicator will change from red to orange to yellow - The volume of alkali added between the start of the indicator colour change and the formation of the end-point colour is large (compared with the volume used if the indicator change colour in the vertical section of the titration curve) - the end-point (shown by the methyl orange) will occur (well) below the equivalence point	Ignore just 'red to yellow' Allow There is only a gradual change in colour or the (indicator) colour changes slowly or there is no sharp change in colour or colour change will not occur on the addition of just a few drops of alkali Ignore just 'colour change of methyl orange occurs at 3.2-4.4'	3

(Total for Question $20=\mathbf{2 0}$ marks) Total for Section C = 20 marks

Total for paper = $\mathbf{9 0}$ marks

